On Exact Sampling of Nonnegative Infinitely Divisible Random Variables
نویسندگان
چکیده
منابع مشابه
On Exact Scaling Log-infinitely Divisible Cascades
In this paper we extend some classical results valid for canonical multiplicative cascades to exact scaling log-infinitely divisible cascades. We complete previous results on non-degeneracy and moments of positive orders obtained by Barral and Mandelbrot, and Bacry and Muzy: we provide a necessary and sufficient condition for the non-degeneracy of the limit measures of these cascades, as well a...
متن کاملSimulation of Infinitely Divisible Random Fields
Abstract. Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible rando...
متن کاملInfinitely Divisible Limit Processes for the Ewens Sampling Formula
The Ewens sampling formula in population genetics can be viewed as a probability measure on the group of permutations of a finite set of integers. Functional limit theory for processes defined through partial sums of dependent variables with respect to the Ewens sampling formula is developed. Using techniques from probabilistic number theory, it is shown that, under very general conditions, a p...
متن کاملSums of a Random Number of Random Variables and Their Approximations with Ν-accompanying Infinitely Divisible Laws
In this paper a general theory of a random number of random variables is constructed. A description of all random variables ν admitting an analog of the Gaussian distribution under ν-summation, that is, the summation of a random number ν of random terms, is given. The ν-infinitely divisible distributions are described for these ν-summations and finite estimates of the approximation of ν-sum dis...
متن کاملKPZ formula for log-infinitely divisible multifractal random measures
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [1]. If M is a non degenerate multifractal measure with associated metric ρ(x, y) = M([x, y]) and structure function ζ , we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a measurable set K and the Hausdorff dimension dimρH with respect to ρ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Probability
سال: 2012
ISSN: 0001-8678,1475-6064
DOI: 10.1017/s0001867800005905